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t u d/dx = Differentiatiom by x

• m d/dt = Differe_iation with respect to time

e

XayaZ = Coordlnate system of rotor-blade vibrations

y£azl m Deflections of elastic axis (straight in un-
deformed state) in y and z directions

= Profile angle of attack in undeformed state

= Additional angle of attack due to twisting

Q = Flapping hinge distance

R = Rotor radius (for BBI = O)

RA L R - a

_ = Flapping angle

e^ = Distance from rotor axis up to elastic axis

eF s Distance from elastic axis up to stress axis

|ES = Distance from elastic axis back to profile
center of gravity

m = polar radius of gyration

(area integral) of a profile; only tension-
bearing parts of cross section taken into
account

m j = Mass per unit of length in longitudinal
directicn of blade

_2 dm Im '[

JdmIm
F 2 im_

I Axial radii of gyration

(mass integral) of a
profile or blade cross
section

I
Polar radius of gyration

(mass integral)

E Modulus of elasticity

iv



I,
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= Shear modulus

_2dF = First principal mon]ent of inertia of'i

a cross section; of. iF

f _(_-eF) dF i second principal moment ofi
J inertia

BI

B=

3

¥J

- I('z'÷ '÷

m St. Venant's torsion moment of inertia

= Aerodynamic force in y direction per unit of
length of blade

Z; _, Aerodynamic force in z direction per unit of
length of blade

M I = Aerodynamic moment about the elastic axis per
unit of length

H_l Nz = Bending moment about y and z axes

Q_s QZ = Shear force in y and z directions

_c Io IS m Abbreviations, see Eq. (3.2)

f g h = Abbreviations, see remark following Eq. (4.23)

y; M'e = _bbreviations, see Eq. (5.31)

Ye_z=_M,_ =Abbreviations,s_eEq. (G.5)

_m¢ Lmo _m_ =Abbrevlatlons, see Eq. (6.7)

_F =Force in radial direction due to all centrifugal
forces between x and blade tip

v_

m

i, lj,P,q,n

m Angular velocity of rotor rotation

s Aogular velocity of j-th natural vibration

a Time function of J-th natural mo_e in forced
vibration

J-th natural vibration

j-th natural mode

Counting indices

v



F

Z

L

= Number of rotor blades

Blade chord

m eu at x = 0.7(R - a), without cyclic blade
control

M Measure of linear blade twist (difference

between eu at blade tip and eu at blade root
in purely linear twist)

_g,_S = cos _BI- and sin _BI-
blade control

components of cyclic

m Blade azimuthal angle

Flight velocity in direction of rotor axis,
positive downward

'_ Induced wind speed (downwash) in the rotor

plane, in the direction of the rotor axis,
positive downward

vx

B

= Flight velocity perpendicular to rotor axis,
positive forward

= The abscissa x!(R - _), out to which lift is

to be present (measure of peripheral drop)

m Air density

NU = Number of rotations about rotor axis

_.MG (2.M_) m First (second) natural flapping mode

I.M_ (2.M_) m First (second) natural swiveling mode

4.N v (2.MT] m First (second) natural torsion mode

NB _ 0(]_): the coordinate system is (is not)

rotated through the flapping angle

_Bl(t) calculated in advance

vi
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CALCULATION OF THE FLAPWISE BENDING, EDGEWISE LENDING,
AND TORSIONAL VIBRATIONS OF ROTOR BLADES WITH COUPLED

NATURAL MOD_ AND FREQUENCIES

H. Oette,
German Research and Experimental Laboratory for Air and

Space Flight, Institute for Rotary Wing Aircraft, Stuttgart

i. Introduction /_.7_7*

The natural mode method is particularly well suited for cal-

culating force vibrations of complicated systems. In this method,
the deflection at any time is the result of superimposing dif-

ferent natural modes, each with its own individual factor qi,

i = i, ..., n. Through appropriate selection of ql through qn,
any arbitrary deflection can be represented (for n ÷ _) or

approximated, the precision increasing rapidly with n.

Hence, the degrees of freedom possessed by the vibrating

system are to be the time-dependent functions c (t). In other

words, the degrees of freedom are transformed by a rule (YE,ZE,

eE)(x,t) _ q(i,t). The natural modes _ependin_ only on location,
which consists of the three functions YEi(X), ZEi(X), and GEi(X)

for rotor vibrations in the flapwise, edgewise and torsion direc-

tions, and the associated natural frequencies vi are assumed to

be known. They are best calculated by a segment method (Myklestad

method, multihinge articulated blade technique, matrix theory of
statics and dynamics). To each natural mode is assigned a

generalized mass (see the denominators of Equations (5.8), (5.21),

(5.29), etc.), which can also be taken as known, since it can be
calculated in advance with the aid of the natural modes. The

natural modes, natural frequencies, and generalized masses in-

corporate all the mechanical properties of the blade, such as

rigidities, mass distribution, rate of revolution of the rotor,
boundary conditions, built-in torsion, etc. in compressed (trans-

formed) form, so that bhe vibration calculation is correspondingly

simple.

If the forced oscillations were to be calculated with one of

the segment methods, the number of degrees of freedom which would
have to be taken into account in order to obtain the same accuracy

would be much larger than the number n mentioned above. This

number wou]d be at least equal to the number of segments, mu]tlplied

by the number of degrees of freedom, i.e. by 3 in the case of

flapwise bending, edgewise bending, and torsion.

* Numbers in the margin indicate pagination in the foreiqn text.



The calc _iation of forced oscillations using the Galerkin
method or related techniques is of less interest these days, since
the natural modes and frequencies can be calculated, and since the
natural-mode method works quite well in the present work, even
when the problems are very difficult. Hence, in a vibration cal-
culation, the Galerkin method sheuld require more numerical com-
putations and provide less accurate results, even though the
number of input functions is the same.

/8

2. SFmbols [see pp. iv-vi]
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Fig. 2.1. Geometry of the rotor blade.

Key : a. Stress axis

b. Center-of-gravlty axis
c. Elastic axis

d. Rotor ax_s
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3. Differential Equations and Natural Vibrations

3.1. Fundamental Differential Equations

We wish to treat different types of differential equations.
We will demonstrate the basic features of the natural-mode

method using the differential equation for pure flapwise bending

/i___2

')" (P_z_)'+m'_E=Z'(x,t,_.)(El z. - (3.1)

The transition to coupled vibrations can be conveniently depicted

using coupled flapwise and edgewise bending

"' ' " '_'÷m"" co =m"' = Y'(x t,_'E){EIcyE) +(ElozE)-(P_FY_' _E- _ :_E ,

El "_"+ "- '" "" Z'

EIc = El4 sen2_u + EI= cos2 _j

EIs - EI4 cos_. + EI2 sin=@u

Elo"(El=-El,)sin@. c_s_u

(3.2)

The flatter calculatio_ uses the flapwise-bending and torsion
degrees of freedom in general. Therefore, we also work with

II I i I I I.. I '"

(EIzE)-(Px,e,e,coseJ-(px.z,)+m z_-rn t_se,coseu = Z'(x,t,@_,e,i_E)

(l.rn,:-¢,n,z )% 2_u_[(_:,%_)o,_,- , =,.,.,_EJ-_feF;%co_e. +_Rorn cos

. ,-n'_J_.- r_'L,._ o. % =M'(x,t,%,,%,_',)

(3.3)

.L

Finally, the most precise representation -- which, however, is also

the most arduous one -- with the three degrees of freedom YE,
zE and 0E will be considered:
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I II I I i

[El,_,*EIoz,÷ P,,e,O,si.nOu- EBz@j _ cosOu]-(Px,_/_')'

I 2 • 2 ! J. I " •

W 2 t ÷ I+ 2 t-Y'I,(.t,_,.,_,,_).-Ip,,.,,_e,,)-_,.[m_.,{xo)_e.],_..m(,,,-I_,_e.l

/_....__Z3

I I ' I I

[EIoYE""E I,zE"-Px,e,-,9",coseu-EB,ej@_s,n",9",]-(Px,z,)'

•l-CORe

=z'(,..t,S,.,_.._..e.).(p_,_,,,.e.)'-_J[_'_.,(_÷o)_n_.,,]' (3.a)

'(y=cose_*z,_._.',e,.)]'-[{6]",-Px_.i._+EB, 6',_')@E'-EB2_u'

' ' " cos_u-_,E_,n_u)-co_nm l._sy_si.n'@__ px,e,(z__s eu_y,._n_.ul__,2r.n.ie,(x.,.a)(z_ '' , .

I • 2 • 2 + h 2" 4. t ., . ..
+ O,)_m[_,m_-L,.,_)co._2eu-i[se,cos'_'.]_'srn,m _ ml,n(y,sm%'Zscos_'u)

•,MI(x,t,_(E,;_[I_,_'E)+(aF[/'L_'j)I-COI_ITI'[(i.rn_-i,rrl_)sLrl"_uC,O,_I_u-[,$eAsIrl1_'u]

Equations (3.1) through (3.4) are taken from the work of

Houbolt-Brooks [1], where x has been replaced by (x + a) because
we start the x axis at the flapping hinge. In Chapter 6, we w_l]

deal with a system of equations which is even more general than

(3.4). In Equations (3.1) through (3.3), the unused degree_ of

freedom are set equal to zero, along with some smaller quaI_tities,

when neglecting the latter is consistent with neg]ecting the

particular degrees of freedom. Let Y', Z' and M' be the excita-

tion functions. Y',Z' = force in y and z dlr¢ctlons per unit of

length, and M' = moment about the x axis per unit of length. They
are to contain the aerodynamic loads including the changes in

the latter induced by blade vibrations. If needed, the inertial

forces due to the gravitational acceleration g and the motion of

the x-y-z coordinate system can also be included, e.g. when the
latter accompanies the flapping motio_ (see Ch. 6).

The orlgina] unknowns YE, zE and 0E stl]1 appear in the ex-
citation functions. This is because there is no point _n putting

them all on the left s_de and incorporating then_ in the natural-

vibration calculation, even in the rare cases i_ which this is

/J_L



w w _ , •

possible. For this reason, Y', Z' and M' cannot really be called
perturbation functions. Nevertheless, the unknowns on the right

side are still dependent variables, functions of the ql. For

example, the Runge-Kutta me_hod for stepwise solution of d_fferen-
tial equations works not only (of. Eq. (5.8)) for qi = -vi_ai + f(t),

but also for qi =-vi2ql + f(t,ql,q2J''',ql,q2,''')' Iteration

also works for .f(....ql,q2,...). Iterative solutions are possible
even for f(...'ql/q2,...) and higher derivatives, when the influence
of "_'etc. is sufficiently small.

Strictly speaking, the unknowns _nfluence the excitation
functions Y', Z' and M' in very many ways. However, in our des-

cription of the functional relationships, we will stick to the
most important influences. For example, in Eq. (3.2), zE occurs

in Z' and Y' because of its influence on the angle a of attack.

Although they play a certain role via their influence on the rela-

tive airspeed or on &, the variables YE and ZE are suppressed.

Aside from the excitation functions, certain other terms

occur on the right side of Eq. (3.4). They come from the centri-

fugal force field, and induce a kind of prestress on the system

with constant y zE and eE values, upon which further deflections
are superimpose_

3.2. Natural Vibrations

The natural vibrations corresponding to Eqs. (3.1) through

(3.4) can be calculated in approximation, but essentially with

arbitrary accuracy, by means of a segment method. The mu]cihinge
articulated blade method calculation has _een worked out, pro-

grammed and tested on numerical examples for all these cases.

The computing time on the IBM 1130 of the DFVLR in Stuttgart is

only a few minutes in any case. The program delivers the natural

modes numerically as sequences of points, through which a solid

curve can then be drawn, but this procedure is normally not
necessary. Instead, when e.g. the natural mode is to be used in

an integration, the integral will be converted to a sum and added

up over the sequence of points. Nevertheless, we will continue

to speak of functions (written in closed form), integrals, etc.

because this simplifies the terminology.

/._z_.5

Let the natural vibrations of Eq. (3.1) and thu_ its solutions

for the case in which the right side vanishes, be

z=j (x ,.tl = = 'it _. = tl2,3...
(3.5)

* = Eigensolution;

= Natural modes;
= Natural frequency (real)

5



Let the solutions of Eq. (3.2) be

lYEI (x,_) =
z_j_

=1,2t3...
(3.6)

when the right slde vanishes. Since the bl_de can vibcate in two
d-irections, the eigensolution in this case consists of two func-

tions of x and t, and the natural mode accordingly consists of

two functions of x, which we wJ!l write as a vector because of
their relationship.

Analogously the solutlcns of Eq. (3.3) when the right side
vanishes are

[] []zE ' (x,_.) = (xl.@_i t :} =1 ,2,:_ ...

The solutions of Eq. (3.4) when the right sides vanish are

= 4 ,2,5 ...

(3.7)

(3.8)

4. Orthogenality Relations /16

4.1. Ortho_;onality Relation for Uncoupled Flapwise Bending

Later on in the calculations, we will require some orthogonal-

Ity relations. Wc wlll therefore derive them in order for

Eqs. (3.5) through (3.8). Zej* from Eq. (3.5) satisfies Eq.
(3.z) when Z' = 0 there, i.e.

[El -o - 1,2,3... (4.1)

Eq. (3.5) then implies

g
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(E;:&i")'l -(P,,___,')'-v_ rn'_-O - 1a2,3 ... (4.#)

For' J = p, n nd J = q, Eq. (4.2) becomes

[EI_,2)'-(P_,_,_')'-v_'_,,_-0

2 e
vqm 0{El--'"'-(P,,_q')'- _","zEqJ'

(4.3)

These equations are multiplied by Z-Eq and z-Ep and integrated
over the length of the blade, and then one is subt'ratted from the

other.

RA RA RA

[(EI_%')"_,d,(EI_,_)"_..o_-j,_..z,,j_,,a,_
o 0

RA _A

0 0

(4.a)

We now wish to show that the left side of Eq. (4.4) is equal

to zero. Integrating by parts once and then twice yields

RA RA RA

Io'_,,x-[o_]o-Iob',,x
0 0

" oC" oC C/o'_dx-[o' dx-fo'io'dx-[o' -[ob' +f b'dx
o o 0

(4.5)

Integrating the first two expressions In Eq. (4.4) by parts

twice, and the two following terms once, we obtain

i I-- -- W-- ! -- II I-- 'I"[(EZz,,)z,,-EZz,,_.,-(EZz.,)z,,EI_.;_.;]._
(_.6)

RA

[ -, _ _ f,---.- p.. _.,]o o- Pxrztp zEq.- zio t

/I__Z
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Now on the left side of the equation remail: only expressions

tne value of which at the root and tip of the blade are to be
subtracted from one another. It can be shown that all these values

are zero, using the boundary conditions. It is well known that

the bending moment and the shear force in the z-d_rection satisfy

M - EIzE' !Q -
(4.7)

M, Q and PxF vanish at the tip of the blade. Therefore, the
expressions in brackets in Eq. (4.6) are equal to zero for

x = RA. At the root of the blade, zE and either M or zE' vanish.
Cases apparently incompatible with this are easy to incorporate
into the system. For example, if the flapping hinge is spring

loaded, the beginning of the blades is simply assumed to be ahead

of this hinge (to the left of it in Fig. 2.1). If the hinge is

equipped with damping, we omit the damping in this case, but put
a corresponding ZE'-dependent pair of forces on the right side
of Eq. (3.1). Hence the expressions on the left in Eq. (4.6)

are zero for x = 0 as well, and we obtain

L

RA

J rn'-ZEp _E_dx = 0 for Vp # V@
0

The latter inequality can be replaced by p # q unless Vp = Vq
(which is hardly conceivable).

4.2. Ortho_onality Relation for Coupled Flapwise and Edgewise
Bending

In analogous fashion, we wish to formulate an orthogonality
relation for the natural modes occurring in Eq. (3.6). By defini-

tion, YEJ* and ZEj* from Eq. (3.6) satisfy the system of equations

ellO I." • m 0

" 1,2,3...

(4.9)

/18
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With Eq. (3.6), we obtain

-- II I _--. II I -- I I t--

-- II I -- 1114 -- It |__

-1,2,3 ...

For J = p and J = q, (4.10) becomes

(a.lo)

")'+ (,4+ -o

(EIo_,_")"+ (El _"_" lp.} '_' '- - 0S .pl --I, xF [pI- vl_m ZEp

-- II H -- I I 2 I-- aBe,

(EIc_e;')"+ (ElozEq)- {PxFye(_)-(V_+ coeo)rn_e,_ 0

-- II -- I I I--

(EIo_,j)' + (EIsZeq,)-{PxFze,_)-v_mz,+ " 0
dD

(4.ll)

We multiply the first equation with YEa, the second with

Z--Eq, the third with -_Ep, and the fo_rth wifh -EEp , then add the
rout equations, and integrate over the length of the blade.

RA

I[(EIcyEI,)yE,l+{EIoyEp)z_,-IEIcy_q "- -'"-- ''- - '"- -") yEp-{EIoYE,_)zE_
0

- "- - "'- {Elsze,I)zE_

/1__9

(4.12)

The terms on the left side will again be integrated once
or twice by parts, using Eq. (4.5). The result is



r-

- "' * 1¢y,_)y,,-{EIoy,j'}zEp[(EIc y,p )Ye_ (EI°_eP'Yz',-(E - ""- - ''

fill-- ,j. -- it I-- -- It i-- -- U I--*(EIo _,l_(_ (EIszep)z_,-{EIozE,)yEp-(EIszE_)z(p

-- II-- I -- II -- I -- II -- I -- II -- I

- EIcyee_/_ EIo EIcy_ y_p+- y(p zee+ EIoyEeze_

(4.!3)

The integrals on the left side have disappeared• This can

be attributed to a certain symmetry in Eq. (4.9). The coupling

terms, i.e. the term with z .* in the finest equaticn and the
term with YEJ* in the secon_Jequation have the same form. In

problems of this type, this syn_etry must always be present, since
withdrawn from one type of vibration by a coupling effect must all

be delivered to another type (-f vibration. Now, using the

boundary conditions, it can again be shown that the expressions
on the left side of Eq. (4.13) disappear. We have taken the for-

mulas for the bending moments and the shear forces from the work
of Houbolt and Brooks [!]. Using the abbreviations from Eq. (3.2)

and neglecting the terms mentioned in the remark to Eq. (3.4),

we obtain:

|t II
Mz - EIc _/_+ EIoze

uR

M_ = Eloy£ ÷ EIsze

I I -- 1ol Ii i 2 o
Qy = -Mz+ P,F3E-mz - -(EIcy_)-(EIoze)+P_-G°eo m i_sxc°s @"

(4.1._)

! ! -- WI II _ I 2

/__20

At the tip of the blade, Mz, My, Qy, Qr, PxF, ant1 m' vanish.
q'herefo_e, the sum of al] the expressions in the brackets in

Eq (4 _ _) is zero for x = RA.• .±] At the root of the blade, Y_,,

ZE, and normally M_: or YE' as well as Mv or ZE* will vanish.
Hence, the exp_c_slons in the brackets in Eq. (4.13) will sum to
zero fo_ x = 0 a:_ well, as long as one of the following cases

applle_: rigid restraint at ends, only flapping hinge, only
swivel hinge, and both bin[sen. Other cases, e.g. one h_nge with

i0
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inclined axis, lead to the same resalts by a somewhat different
route. Eq. (4.13) then becomes

I_%'(_ep)eq+_._,_)dx=or for
o

_p+ W@ (4.15)

4.3. Orthogonality Relation for Coupled Flapwise Bending and
Torsion

The next task is to formulate our orthogonality relation for

the natural modes introduced in Eq. (3.7). By definition, ZEj*

and _Ej* satisfy the system of equations

II |

m (_mt-_m_} eq cot, 2_'u
u E_ J -'-_F eF zE_ cos'a'u coco

_, = 1,2,S...

(4.16)

/2__A

With Eq. (3.7), this becomes

' -" 'm'- ' ' -zei+vj rn LES_e_s_.= 0

-[(_'+ . 2 - I , - mm + 2 m. 2 . 2 -PxeLe )_e,i] -_eezea cOr_eu c°e°rn (trnii-Lmr_)ee_ cOs2 eu

-v_rn'_m__ +v_'rn'l.es"_ cose. - 0

_, = 1,2,3...

(4.17)

For J = p and J = q, Eq. (4.17) becomes

II



-'' COS.Lg,u)-(PxFZ_.q,)-Vq,mZeq ' v_rnL_'O'eo,co,_'Lg'u 0(EIzE,:,,)-(_t:erB'Eo, , -,, 2.- + ,, - .

• 2 -I * - , 2 _' 2 . 2 -

2 i. 2 2
-vprn tm _'Ep'_ vp rn't=+ _ocos _u = 0

+ ' ' " ' -
yl_ =. 2-

C4._8)

We multiply the first equation b_ _Ea , the second by -_Eo,

the third by e , and the fourth by -@Ep,-add these four equaUE
tions, and integrate over the length of-the blade.

_A

0

-(&_z_J_.,_,(p_._,;)'_._-[(_,_'" - "--" +[(o_÷_,_,)e_Je,,,,_,)e=_]e,,__ " - "-

0

(4.19)

/2__Z

The terms on the left side are integrated by parts twice,

once, or not at all in accordance with Eq. (4.5). We obtain

[(EIz_j2¢,_-(EI " '- -- "" 2z,_) Z=,o (PxFe_ _'_cOSeu)'2_ct+(P_Fere_o, coseu)'2_p

(_,20)

12



The integrals on the left side have again dis_:j)peared, cf.

remark following Eq. (4.13). In this case too, with the aid cf
the boundary conditions, it can be shown that the expressions on

the left side of Eq. (4.20) vanish. Again by Houbol_-Brooks [1]

and neglecting the appropriate terms in this case, the bending
moment is

(_.21)

At the root of the blade, we may assume zE = 0 and E = 0

as well as zE' = 0 or My = 0 and eu = 0, the latter because the
axis of the flapping hihge must be the principal axis and the

axis of symmetry of the blade cross section at the point concerned.

Hence, when x = 0, the quantities zE, eE as well as zE' or EIZE" ,
and thus the entire expression in brackets in Eq. (4.20), vanish.

The fact that this expression vanishes for x = RA as well will be

proved this time not via moments and shear forces, but using EI,

PxF and CJ. Namely, these quantities and all their derivatives

vanish at x = RA (or at x = RA + s with s+ + 0). Eq. (4.20)
then b_comes

/2__23

(8.22)

4.4. Orthogonalit_ Relation for Coup.led Flapwise Bending, Edg,:wi___e
Bending_ and Torsion

Now the orthogonality relation for the natural modes defined
in EC. (3.8) will be formulated. With the right sides vanishing,

YEJ*, ZEJ* and eEj* satisfy Eq. (3.4), so

lh _ I.. % "'_

,. 2"_'---,. ,..' s_ne.-_;,;c_,e.):Oh (el,)/E;' Z,;, _E_I + rnlmUl_;_'rm v'ES_J,;_

(4.23)

13
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• y _ ....

The abbreviations f, g_ and h are obtained by comparing

Eq. (4.23) with the left side of Eq. (3.4). The symbol d means

"difeerentiation by x." Since f, g, and h are linear8in YEJ*,
ZEj _.'and @Ej*, we obtain from Eq. (4.23) with Eq. (3.)

2 a

g ((::I,+++, _.++, 'F-,?+I- v/m'2+:i +',"_,mt+:+++:<_m+O+ =0 (4.24)

h {d ,_E_ ' _-E_,
2 h2-- . 2

For J = p and J = q, Eq. (4.24) becomes

=0

=0

(4.25)

In this case, we multiply through by YEq, ZEq _ eFq, -YEp,
-_Eo, and -_Ep, then add all six equations, integrate over _ne
length of the blade, and obtain

_A

0

+_._,. o(d

(4.26)

/24
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Writing out the functions f, g, and h expllclty, Eq. (4.26)

becomes

RA

eE,cosO.]"_E+dx /2 5I[E _y,, EIoz,,, ___
0
RA

_/_+Elo zt_+ PxFerO_.sLnOu- EBa 0_ -' "-
0
eA

0

EBa e,,' e,q. SmOu ] ze_
0

-- I +- # . I-
+ E" ",I- "COS_u Z_psLn_u)]_%dx

6
fA

'2 -- ' ,-, + _i, rlOul ]' _,Epdx

OR.

_ -I a 2 - . l 2 I - . 2 '- -

-J{( xFY"l+CO'° [rn'l's(X+Cl)_'P'l'nlP'u]+c°R°m['s_"sl'n_u+COR_rn_/_}Y'q'dx (4.27)
0

- I_ 2 _ - • _ 2 _ - . Z '- -

+I ((PxFy%). cO,o [rn l,S (x+ O)_%_n'_u] ÷ co,om l,s _E(i,Sm_U+CO_my.}y, pcix
0

0

" -"+ '
o
l_A

_f _ m - m . 2 m - I _ I . 2 _ - . -
J
o

- i - W • ÷ 2 _ + - I -- I ,. + Z ' - • -

0
= right side of _q. (4.26).

In the last two brackets, one expression was omitted in each /26

case, since these two expressions obviously cancel each other.
Continuing, the underlined expressions also cancel each other
out. Of the remaining terms, those in lines I through 4 are

integrated by parts twice, and those in lines 5 through lO once,
in accordance with Eq. (4.5). This eliminates all the terms pre-

ceded by integral signs, and we obtain:

15



--II,t. -- w÷ - . I- t I_
{[EIcy,F, EIoze. _Fe,@e,sm@u-EB2Eu_'epcos_u]YE,_

-[EIc_e;+Flo_,_+ - " ''- 'CO, u]Ye,P. e e  s ne.-EB , 6eE e, '-

*[EIo_e;+E I,Eel- PxFe,O',f,co6_'u-EB,@,_esm#u]ze,+'-'' '-

r_. _ il - ii - i- i • i_

-I '-_o Ye,_'" EI5 Zect- "PxeeF@eq.co_O'u-EB%@'u'0'_ sm'_u] z ep

H -- II -- , I- I - I
-[EIc_ep+EIozep*PxFer@E_,sm @u-EB2eu'_ep_s@_] YEQ

- , COS@u-EB,@'_.eq,sm_u] z,p'-' -'
(4.28)

• 2+ 12 - P i- I 4--- m • --
-[(O:}'+Px,,,EB,@u )-e,;EB,ej(y,.cose,,z,,,s,ne.)]e,,+

+[(o3"÷B,iZ+EB,e:,')_,,_-EB,eJ(ijc(,, +- ""

_[T)x F- _+ 2 _ - _ •

_JinxF- _ .2 , ÷ -_ - + -_+ 2 _ - _ RI

= right side of Eq. (4.26)

It is highly reasonable to assume teat the left side of

Eq. (4.28) will disappear Just like those in Eqs. (4.6), (4.13),
and (4.20). Since the expression in wavy bracl:ets vanishes at

x = 0, we obtain from YE = zE = 0E = YE' = ZE' = 0 for x = 0 in
the case of rigid restraint at the en . For a f]app:nF or

swive] hinge, it will be -- instead of zE' and YE' -- the corres-

pondin_ expressions in bz'ackets _n line 5 th_ouch 8 of F,q. (4.28),
the ones multiplied by zF' or yp' which are equal to zero.
According to }[oubolt and [_zooks_[_], these squ_re-bracketed ex-

pressions constitute the bending moments about the y and _ axes,

apart from a constant tern: £xF eF sin 0u or PxP el.'cos 0u.

/
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However, in t}.e case of the flapping hinge, we may assume Ou - 0
for x = 0 by the remark fo]]ow_ng Eq. (4.21), and in the case of

the swivel hinge, eF -- 0 for x = 0.

At the tip of the blade, the quantities Elc, Elo, Els, GJ,

PxF, EB1, EB2, and m' vanish along with all their derivatives•
The expression in wavy brackets therefore vanishes for x = RA as

well, so that the left side of Eq. (4.28) turns out to be

identically zero. The desired orthogonallty condition then reads

_A

0

for _p • v_

(4 _

Perhaps the orthogonality conditions can be derive( _n a more

general and elegant fashion from (virtual) work principles, e.g.

by the Ritz method. The boundary conditions would then have the
simple and general form "boundary work = zero."

•

5.1°

Methods of Solution

Method of Solution for Uncoupled Flapwise Bending

We must solve Eq. (3.1):

/2__88

(EIz_) -(PxFz_)+rnzE (x, t , (5.1)

For this purpose, we use the trial solution discussed in Chapter i:

" 2)zE(x,t) =

Z'E_ are the (known) natural modes, and q._ the unknown
tions time. Using Eq.r_ (5.2), we obtain from Eq. (5.1):

func-

17



-- II II -- I I ,m I--

(5.3)

Now we use Eq. (4.2) for the natural modes and frequencies.

zE_l v_mzE_ = 0 - t,213... (5.4)

We multiply by qj and sum from J - 1 to J = n:

- " - '-

SubtractingEq. (5.5) from Eq. (5.3), we obtain

n

We multiply by ZEi and integrate over the blade

(5.5)

(5.6)

n 12A RA

i-1 o o
(5.7)

Because of the orthogonality condition (4.8), all terms in
the sum on the left side of Eq. (5.7) vanish except for the one

with J = i. Hence, Eq. (5.7) becomes

j' Z' (x,t,ze) z-a dx

Cli.+ vi.= q'(." o _rr_ _.c_z dx

o

(5.8)

/29

This equation has already appeared in DFVLR Report 98 bv
Just and Storm [2]. Applying it for i = 1 through n, we obtain

n differential equations to calculate the n functions qi(t) --

In Eq. (5.2), qj(t). The differential equations are coupled to
one another vza Z', In which zE is to be expressed in terms of

18

f



the qj by Eq. (5 2), In general, these equations can be solved
only numerical]y_ particularly if the Ca-a cur've is nonilnear.

If the Ca-e curve is linear Z' has a form which is of the
degree of difficulty of Eq. (5.9i. In this case, an analytic

solution is conceivable, and we will discuss this topic briefly.

Z'(×,t, _E)" a(x)sin C_ot + b (x).(1+_ sin _o,) _ (5.9)

Hence, the rotor blade is acted on by an excitation term of'

the usual type, and also by damping which is a function of the
blade-rotation angle and ZE. This damping has been mentioned in
the work of H. Schmldt [3], P. 120, Eq. (15+1). Eqs. (5.8) and

(5.9) imply

or

o

_'_+"?q_= i_z,_ax"si.n=,o t. "" ,-2 _A j 2
Jm _'_Ldx

o 0

(I +_.sin r_Rot)

For _E, we use Eq. (5.2), and obtain

j rn ZE;" ox
o

I'I

(5.1o)

(5.ll)

(5.12)

/3__!

with

Jo(xlz,_dx Ib[xlZE_Z-_dx

o _a= [*m(:x._= _'"_'_'-'_-== ,- zdx z_;. dx
0 O

(5._3)

]9



Y

L._

m

Eq. (5.12) can be written out for i = i, 2, 3_ ..., n. The

resulting system of coupled ordlnary.differentlal equations has
time-dependent coefficients for the ql. It can be solved stepwise,
e.g. by the Runge-Kutta method, or also by using harmonic tri_l

solutions for the ql. In that case, the result is m.n algebraic

equations with m.n Jnknowns, where m is the number of harmonics
taken into account, and n the number of natural modes taken into

account. The constants ai and Bij can easily be calculated by
replacing the integrals with sums and substituting in the discrete

values calculated for the natural modes by the segment method.

5.2. Method of Solution for Coupled Fla pwise and Edgewise Bending

The equation to be solved in (3.2), which sta_es

(EIcye')'+(EIo'' " '" ' ' " Y'(× t _'_)z,) -(PxrY_)+rn _-coRo m Y_ ,,

(EIoy;')"÷"" " "' =

(5.14)

For this purpose, we choose a trial solution in the form of

the coupled natural modes

zt i "_ 2E

(5.15)

Using Eq. (5.15), we obtain from Eq. (5.14): /3__A

11 -- U II ,_. -- Ill ,-- -- l I ,'I' I-- ,,

(5.16)

Eq. (4.10) states

Y

2O



-- I .+ - . i - I I 2 2 l-

(5.17)

(EIo_u'l'+(EIs_E_'I'{P_F_-E_}'-V_m'_E_
I

=0

We multiply by qj and sum from J = 1 to J - n

cYE + EIoze e q'_- +co m'_E = 0

n iI

-- H "I" -- ii -- I I _ I_ [(EIoV  lq -0

(5.18)

If Eq. (5.18) is subtracted from (5.16), the remainder is

n
i- ,. 2

m z,i.lqi.+v_,qi.)
i-1

= Z'(x0t ,_)

(5.19)

i m

We multiply through by YEi or ZEi, integrate, and add:

(5.20)

Because of the orthogonality condition (4.15), all of the

terms in the sum on the left side vanish except for the one with

J = i. Hence, Eq. (5.20) becomes

/3__A2

_A

[_'(x,t,z_l_e_z(x,t,_

J
0

(5.2z)

21



5.3. Method of Solution for Coupled Flapwise Bending and Torsion

The equation to be solved in (3.3). It states

I I I I,, I "" I "(Efz/)'-(_F_F_ _0_%)-(%_l+m_-mt_co_%=Z(_,t,_,,%,%)

+,',','_2_,-_'L,,._,=,%. M'(,,,t ,_._,e,,_,)

(5.22)

The trial solution in the form of coupled natural modes reads

(×,t)-_ (,)._(t)
% _=I -L_J_.

Using Eq. (5.23), we obtain from Eq. (5.22):

_:[(EI- ''Z,_r) Wj-(PxFeF_'Ejr,,OS_u)q,_-(PxFZE})q,_- ' - " +mZEIql-mtEs'_jOqjCOS_.]'- "" ' " ""
i.t

- z'(,,,{,:_,.,%,_,)

(5.23)

(5.24)

Eq. (4.17) states

/_5.25)

22



We multiply by qj and sum fro_ J - 1 to J -- n.

fl _; 2 f_ 2 , -x [(EI_4)'%-(p,_e,,%+_o_%)"_-(p__4j_,-v,_-.,_,+_ _,%%co_e_-o

I1 - ÷ .2-- J I - _ . + 2 '. 2 . 2 -

If Eq. (5.26) is subtracted from Eq. (5.2)I), the remainder is

rl

rl

:+,.,.,'(+.,+,i.,.,'-_,+.+t,,=,+,.,J(%,,.,.,+"+,).M'(x,t,+,.+,%,++)i-1

(5.27)

We multiply through by _Ei or _Ei, integrate, and add:

_,%++/%)i'
o m' I_E+ P.£;+-IEsCost_+(_Ei _+ + [,E+l_Et.)+im2_Ei _E+] d x

- z'(×,t, s,+,_,,,_,)._,,_+M,(,,,t,_,,%,_)._=_1d,,

(5.28)

Because of the orthogonality condition (4.22), all terms in

sum on the left side vanish except for the one with J = i.
Therefore, we write:

/3__4

RA

%+,v+,q+,- --++,
. - . _-Z]d x

Jo

(5.29)
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5.4. Method of Solution for Cqupled Flapwise Bending, Edgewise

Bending_ and Torsion

The equation to be solved is (3.4). With the abbreviations

from Chapter 4, it states

f(d,_,z E ,'O'El+rn'_ + rri'lEs._..si.n_u = ye'(x,.i;,:gE,_:E,'O"EI

(5.3o)

At this point, we introduce three other abbreviations:

Y_(x'_",,_=,_=,"e=)=Y'(x,t,_E,+,,41+(PxF¢_Co_'a',,,)'

( ]' ,-_,,_[,',",'tE__+o)_._',.,+_,:,',(_-t,(:O_u)

z;(x,.t:,s,+_,_,'4)- z'(,,,,• • ' ' ' '[,.,.,t,,(,,0)=.,%]• , ,::/E,z_.,'e'_:,4l+(P,_.ermn',9',.,l-coi_' '+"" '

Ne'(x,.t,S,,,_:,,% ,_,l-M'(_,._,_,+,:_,e,_,_.+l+(p,,,_./%'3+

CDR: ' . 2 . _ '- m [(_m,-_.+)_n%_.-t,+,As,.%]

(5.31)

Again, we choose a trial solution with coupled natural

_,_(,<,',:)-:9. (,():q.+(,)
i.'l

[ _J_

modes:

(5.32)

/z__!s
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Since f= g_ and h are linear functions of the unknowns,

Eqs. (5.30) and (5.32) yield:

i.t,-
- y_(x,_,h,%,%l

_1 n (d,]it, zE_, @_i)"qi +rn'ims _q_i÷ rn'lEs(_f.i stn@u"zqcos

- M_(x,_,_E,_E,%,%I

(5.33)

Now we multiply Eq. (4.24) with qj and sum from J - i to n:

n
-- -- -- • 2 s- 2 I - •

n - _ '- I i -
(5.34)

If Eq. (5.34) is subtracted from Eq. (5.33), the remainder is

[m'(z,a-t,,_,_o_%11%+_,)%)] - z& ,t,),#.%,@,1

(5.35)

25
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We multiply through these equations by Y-El, Z-El, and O-El
respectively, integrate from 0 to RA and add the equations.

RA

_,,1 0

..... -'-+
0

(5.36)

Because of the orthogonallty condition (4.29), all terms in

the sum on the left side disappear except for the one with J = i.
Therefore,

_L + _Or L =

2A

! ' '.. -+ , ,_E/.2a+Me(x,t,:9=,:_,,@E,_.E)._Ei]dx.z,(x,t ,%
(5.37)

RA

-2 -2. 2-2
[ m' [_r,*Zez+Lm e_,+2 L,s_e_as_@u-2tsEa_acoseu] dx
0 ' _'

6. Inclusion of Inertia Due to Extension of the Blade in the

Transverse Direction and BBi-Terms_ partlcularlF Corlolis
Force

/3__!7

l.mM

Fig. 6.1. Undeformed rotor blade with representa-

tive mass displacement Imp.

26



In the work of Houbolt and Brooks [i], the torque due to

angular acceleration and resulting from the extension of the blades

in the transverse direction were temporarily ignored. These

torques are particularly important in natural vibrations. In
this case, we are particularly interested in the blade extension

in the n-direction, since it greatly exceeds that the in _-direc-

tion. We go back in Houbolt and Brooks just to point at which the

_erms concerned were neglected. The equations for the moments

m z and my now acquire the following additional terms Z when a
less drastic simplification is carried out.

o. 2 ,.

t . 2 Z£- m '(_"s - im,_)si.n@. cos@." ""

Z (n'_y) - rn'(J.m_,S_,__'u+i.mr_ 2,. , ..,. COS'O'u|' z E

I • 2 • 2 • ."1-,-,.,

(6.1)

Some simplifications have been retained, but they are Justi-

fiable even under the enhanced accuracy requirements. For

example, _Ro2ZE ' and 2_Roe E are considered small in comparison

with ZE'' This is legitimate for the higher natural frequencies
with which we are specially concerned in this case, since the

terms are roughly in the proportion _R^ 2 to 2_ R _ to _2. To

clarify Eq. (:.I), we set 8u = imo = 0_ and obtain

(6.2)

We will not use this equation further, first because 0u (and
perhaps im_ as well) may be even somewhat larger, and second because
the coefficients of Eq. (6.1) occur more often so that the extra

work in comparison with Eq. (6.2) is not very great. At any rate,
in Eq. (6.2), we have an expression which can be ]erlved w_ry
simply from Fig. 6.], if the x and y axes are made to colnclde

with the _ and n axes respectively.

Since, according to Houbolt and Brooks, _z' an_ _,' contri-
bute additively to the left sides of the first and second equations



respectively in Eq. (3.4), the correction terms Z'(_ z) and Z'(_)
from Eq. (6.1) must be added on the left to the first and secona
equations in (3.4).

So far, we: have not mentioned the flapping angle SBI" The

deflection due to 8BI (with a flapping hinge) should be contained
in the z deflections. In order to get some idea of the Coriolls

forces in the y-d!rectlon, the coordinate system is rotated

through an angle of _Bl(t). This adds a few more terms. We will
not bother to derive them at this point. 1% would require an

expansion of the derivation given by Houbolt and Brooks [i],

but would not involve any fundamental difficulties. Furthermore,
each of the additional terms is easy to comprehend. Now, with

the abbreviations introduced in Eqs. (4.23) and (5.31), with the

additional terms from Eq. (6.1), and with the additional terms due

to the coordinate system being rotated through 8BI, Eq. (3.4) now
reads:

"" "'+rn_/_+rn,lEs_sin_u_ ,. _ :2 ÷. 2. 2 .t

/ 3_._%

(6.Z)

h(d,y " ' "'

- Me Ix, t,_/,,zE, tg_.,@_.)+rn [x_,+ 2Ca,oJ_, PS,+CO,.(X+o)_Jm]l.[scos 1},

It should also he observed at this point that the centrifugal

tension PxF again depends on 8BI (the factors cos _BI). To

28



simplify th_ngs, we wish to omit the underlined terms in Eq. (6.3).

They are third-order terms, if _B1, zE, eE, and ZES and all their
derivatives are considered small (or _ourth-order terms, when

eu is small as well). Hence, the _Bl-dependence of PxF can be
neglected in the abbreviations f, g, and h as well. If we did not

get rid of these terms, we would have to deal with natural fre-

quencies which depended on 8B1, and therefore on time (the in-
fluence on the natural modes is even smaller), or we would have to

insert corresponding correction terms on the right-hand side, e.g.

(%F

The magnitude of this simplification can be diminished by

computing the natural vibrations with the mean value of 8B1.
However, in ordinary cases with a o _ 5° it is hardly worth it

The dependence of PxF on 8BI can easily be taken into account /4___0

in the abbreviations Y'e, Z'e, and M'e, although there is not much
benefit in this either. Eq. (6.3) now becomes

9 E

re-

' , ,

(6._)

with

= Ye'(x,t %)

2_9



(6._)

We also wish to formulate the orthogonality condition for

Eq. (6.4). We will follow the discussion in Chapter 4, where the

orthogonality condition for Eq. (3.4) was formulated. Again we
use the natural modes defined in Eq. (3.8), although these modes

will appear somewhat different numerically, since not Eq. (3.4)

but Eq. (6.4) with a vanishing right side was used to calculate
them. Eq. (4.23) now becomes

, , l., , ..,s_ntSu , i. 2..,i ,. 2.."_'f(d, :_s;,zE_. ,',.,q'++)+ my_.+ + rnI.EsO, I -tin i.mc'_p._ +mi.rno ZE,;.|=O

It ,il I.. I _ # n_ I h 2 .. #I h 2 "' ,l'Id

g (d, _/E_,Z+i,+_+)+raZE+ - rn't+s_'+jcoS_Tu-tm +ms ZI+ +rn+mo ++il=0

I # n ex ,. 2__.*÷ t .. c
h (d ,_Ej,ZE+,X_E+)+mLm XTf+ rn [ES(_/_jsinX_u-_;E_COS@u/ =0

(6.6)

141

With the abbreviations

2

• 2 " 2COS_q.u.t.. 2 .2Lrnc = Lrntj tmr_ 5Ln _'u

irn:= L , .z. +r_ +m+sm + cos+u

(6.7)

3O



Analogously, Eq. (_1.24) becomes

_'(,__, _,_)-_,f[m%. ' - • '. ,-, ,. ,-,,, , r,',tEs'_E_s.','%-(m_oy_+_L.,oZ_)]--0
9(d,_E,,_,_,eE_)-? '-- ' - ,.2-, ' 2-,,V_ [mZE} m[Es_ejCO$_u-(m LmsZE_+mLmo_E_ ) ] = 0

2 h 2-- I _ . _

(6.8)

For J = p and J = q, Eq. (6.8) becomes

2r i- + , -- . e. 2-I+ I. 2- II(d,.%,,_., _,,)-_,,,L_ _,, mL._.=._.-(m_m__,,,'r,_m,,_,,,)]=0

g(c_,.%,_._,,_,,) .2 ,- , - ,. 2_ , ,. ,_,,

h(d,.yEp zEp _'Ep)-v_ " 2- , - • -

f (_,_, _,,,%,,/-_',_[,',',y,,_*' - " '"_-'* " '- " (_"_), '- mLEs_E,sirl_u-lmimc_E _ ml.moZE_)] ---0

- - 2 _- _ - i I

_ I -- I

, , mim_, +mIES(_ E s[n'_u-z COSeu)

then add all six equations, an_ inte_at@ ore. _ne ±en_th of the
b lade :

%

J[_.f(_,_,,_,,%./%.,(_,_,_,_,_,_,_l
0

+z(4 9(d,_Ep,zf.p, _'ep)-'_r_'9 (d ,_e_ ,ZE_,I_E_I

eA

+I.eS(_,pO,cl.+y_,.Oeplsmeu-l.es[i,,e[_+ze_._'i,)c°s _ujdx
e,
{f r_

-- £ _. 2-- I h 2--1 -- II
) _'E%.+(m Ires zEp'm lmo YEp) ?-£,]

0

_ 2 '. 2- t _. 2- t t t. 2- I =. 2_; [(m,mc_ +m l.moZ,q,)_.p+ (m I.msZEaF*m,muY_)' ZE,]} dx

(6.!o)
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The left side of Eq. (6.].0) is equal to zero, since it is
identical with the left side of Eq. (4.26), and the latter, was
proven to be zero by using the boundary conditions. By _',tegration
by parts, _;e rewrite the last two lines of Eq. (6.1C) as follows:

]Ep '"Lmo_E_)]Ep + B. 2- ! f. 2- !
o

(6.11)

I_A I I • 2-- I-- B

Lt,m¢ YEp YEct+LmoLYEp_E_t+ _Ep
o

The expression inside the second pair of wavy brackets in

Eq. (6.11) is equal to zero, since YE and zE vanish at x = O,

and m' vanishes at x = RA. Eq. (6.10) now yields the orthogonall-
ty relation

/4__/3

%

0

+rE+(++,,+++++++++,,)_.+,.,-t++,(m+,,.%++_++++,)=++,+

++.__+,++,_++t,,.,o2(_,.+:m+++- ,- , . __ ,_,
(6.12)

By analogy with Chapter. 5.1), the solution of Eq. (6.)_) is

organized as follows. With the trial-solutlon sum in Eq. (5.32),
Eq. (6.;+) becomes (since f, g, and h are linear functions of the
unknown)
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-- .(. 0-- o. ! -- °' !. 2
_; [f(d,YE_,ZE_,_E_)C_ rnYE;_(}j+r'rlLESl_E;)°r_str11_u-( m'mc ._E;

"t"M"_ : 2--- IV_ /

(G.]3)

I'I

with the

tiply Eq.

n

. _(,,,(,._,_,, e,,6_,_,,,_,)
abbreviations imc , imo and ims as in Eq.

(6.8) by qj and sum from j = 1 to n.

(6.7).

_-- _ _ .2 t_ 2

__ E_r,_'£_ )_i-_'_ m _/E_0(_- v_ m LE5_E_ c_;__l.n t_'u

2 ,. 2-- i t. 2--11

._,_(,'r,_no_+,'n,..z_)._]=0

d - = _ 2 i_

÷_; =. 2-- _+ _. 2-- _ I(ml, msZE} mLmo_YE})q,_]- 0

n
m , i ° m

The difference between Eqs. (6.13) and (6.1/4) is

We mul-

(6.14)

/a___4a

R I_ = -- . I. ?.- I+ _. 2- _ { .. + 2
{[m)'E,'mI.ES'_s, sl.rl_'u-(mtmc_E 1, mtmoZE,)}(q', _,q',)}

j=t

-,Y,_(_,_,S_,_._,e,,_,,_,,}

rl " i_ ! -- _. 2 z,, m,mo_,,,l'].(_,.W_,1}

- z,_(x,,,_,,,_,,e,,,_,,r_=,g=}

(6.15)

n _ • 2-- _ . _ ... 2
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These equations are multiplied through by ,Y-El, Z-F,.1anu e-El,
integrated from 0 to HA, _nd added.

n i_

I. 2
--(tl'lLll'l¢ y_ I. 2-- I I-- I. 2-- I I. -- I I-

RA

YEi+Zee•_F.t+Mee
0

(6.16)

/4__.5.5

The third line in this equations must be reformulated
integration by parts. Like Eq. (6.11), we have

With the

I{(r).Vtmc),e_) ,. 2-,,- ,.'" '-'+mLmoZe_)y_+(rnL_5-'" _
0

,^

,_ _, .
O

aid of Eq, (6,17)) Eq, (6,:16) becomes

by

(6._7)

_.t o

z_iZei]dx

_,

0

(6.18)
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Because of the ortho£onallty condition (6.12), all the ternJs

in the sum on the left side disappear except for the one with

J = i. Therefore,

_A

-'" " ]
o

(6.19)

,-2 - I+. 2- J2_-. __-za tm _a +2Les(YE;.'_E_.s:n
J L-"

o

/4._!6

As is evident, the expression in the denominator, i.e. the

generalized mass, is larger than that in Eq. (5.37) by the last

three terms. These terms are particularly important in high-

order natural modes, in which YE' and zE' are relatively large in
comparison with YE and zE, The vi2 must be correspondingl_ _

smaller_ than the vi 2 in Eq. (5.37), while the behavior of YE, ZE
and eZ should hardly change at all.

The BB1 contained in Yee', Zee', and Mee' is an additional
degree of freedom apart from ql through qn" In order to determine
it, we need an additional condition. It is well known that BB1
determines only the position of the coordinate system (see Fig.

2.1). In that diagram, a flapping hinge was assumed. Computing
with a flapping angle without a flapping hinge (at a purely

imaginary, spring-loaded flapping hinge, by analogy with the

method of Payne) gives rise to several other not very simple prob-
lems in the natural-mode method. The blade vibrations we are

looking for will be superimposed on the coordinate system rotated

through the time-dependent angle _B1, a ZETdeflection no longer
being parallel to the rotor axis, so that zE would yield a

Coriolis-force component. It is now evident that 8Bl(t) should
be such that the x-axis of the coordinate system is the middle

chord of the bending curve at all times if possible.

Two methods of calculation suggest themselves. The first is

to set _BI = ql/R. For a hinged blade, the first natural mode
does satisfy the equation (YE ZE eE) = (0 x/R 0), within a certain

approximation. Hence, ql is calculated with the coordinate system

unrotated, then _B1 is calculated, followed by the remaining ql

in the coordinate system rotated through _BI. (With all the q
coupled, the "followed by" is not to be taken literally. Instead,
the calculation must naturally be done simultaneously.)

The second, more accurate methog is to carry out the entire

calculation first for _BI = O, then calculate the time behavior of

/4_!7
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_BI from the computed q!(t), and then carry out the calculation
once more. The values for ql will still be small, and these

values can then, if necessary, be used for correcting the BB1 curve

and for carrying out a ren¢ ed calculation.

7. Determining qi and Qi at the Start from the Initial Conditions

7.1. Initial Values for Uncoupled Flapwise Bending

In order to complete the theory of the natural-mode method,

we will now deal with the following problem: given the deflections

and their time derivatives at time t = 0, what are ql and qi at
time t = 0? These quantities must be known at the beginning of a

stepwise calculation (e.g. the Runge-Kutta method). It is true

that the initial values of qi and qi can be estimated or Just
set equal to zero. However, if we wish to start from a precise
initial state as defined by the deflections, the following trans-

formation of the initial conditions is indispensable. By means of

an inverse transformation, through which the values of YE, _E, and

eE, as well as YE, ZE, and @E cain be recovered from ql and qi, the
accuracy of the representation of deflection curves by natural

modes can be reviewed. Naturally, complicated bending and torsion

curves can be approximated well only by a large number of natural
modes.

Again, we begin with the simple case of uncoupled flapwise

bending. Let the initial deflection in the z-direction ZEa and

its time derivative ZEa be given:

/4_ 8

ZEa = zEa(x), _Ea = ZEa (x); a = initial state.

zEa must be built up from the natural modes ZEj in accordance
with Eq. (3.5), i.e.

zE,,(x): q, o. (x) (7 .l)

In order to determine the qJa, we multiply on the left and
right by m'z-Ei(x) and integrate over the blade:

RA

'm _zEo "_s;,dx
o

(7.2)
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Because of the orthogonality condition (4.8), the expression /49
on the right vanishes except when J = i. Therefore,

RA

RA

J" dx
@

(7.3)

This equation is very similar to Eq. (5.8).
initial deflection rate ZEa(X) yields

Analogously, the

(7.4)

7.2. Initial Value for Coupled Flapwise and Edgewise Bending

Let the initial conditions YEa and ZEa and their first time
derivatives be given. We again form a trial solution with the

(two-dlmensional) natural modes defined in Eq. (3.6).

(7.5)

w

We multiply on top by m'YEi , and on the bottom by m'_Ei ,
integrate over the blade, and add the two equations.

RA RA

r i _ mO --

0 _=1 o
(7.6)

Because of the orthogonality condition (4.]5), all terms In

the sum vanish except for that with J = _. Thus, by analogy
with Eq. (5.21), we obtain

_7
J_
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RA

O

RA

0

(7.7)

/5__2o

Accordingly

q';.o

RA

!

FIA

clx
0

(7.8)

7.3. Initial Values for Coupled Flapwise Bendins_ Edgewise
Bending and Torsion

We will now proceed directly to the most complicated case
discussed in Chapter 6. It contains the two simpler cases dis-

cussed in Chapters 5.3 and 5.4 as special cases. To represent the

prescribed initial deflections YEa(X), ZEa(X) , and eEl(X) , we now
form the following trial solutions using the (three-dlmensional)

natural modes defined in Eq. (3.8).

ZEQ _,=1
a ,

(7.9)

Following the sum symbol on the right side, we must arrange

to have an expression which again vanishes for all J except for

j = i. The complicated orthogonality condition (6.12) may be of
assistance in making them vanish. The problem is to multiply the

three above equations in succession by appropriately chosen fac-

tors (in some cases, after first differentiating by x) so that

when the resulting equations are added and integrated from 0 to

, the expression inside the sum will correspond to that in• (6.12). This does not prove to be especially difficult, and
lead to the following equation.

/5]._
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RA
oo I ..... - - - -

(7.1o)

I.,,=(_'_;_*_E_'E;.)cos'e,,,,-/,,=2-' -' ' "'-' -' -' -'" ' _-_'-'

Because of the orthogonality condition (6.12), all the terms

in the sum on the right vanish except for that with J = i. IIence,
Eq. (7.10) becomes

RA
f _

O

(7.11)

' - -- • 2 I _1 . 2 _1 I I-I " 2 I-- I

_J is the denominator constant (generalized mass) from Eq.
(6._9_.Tfwe replaceYEa,Z_a,e_aby _a, _a, an__a, we
obtain

RA

o
(7._2)

-- O e • 6

-I.m, _y=, (Y_,,,, yea ,,,) .,,,Z,;oZ_,]dx( ,,,_=°z=°_=_)co=_.+,.,y=.+,_o '= + z.+ ' •

8. Sample Computations

8.1. Programs

/5__A_

In order to be able to calculate the dynamic behavior of rotor

blades by the method of coupled flapwise-bending, edgewise bending3,

.J.;



and torsion natural modes, a Fortran program was written. It

includes all the preceding theory in its most general form, except
for the moment of inertia dae to expansion of the blade in the

transverse direction, which has not yet been incorporateO into

the program for coupled natural vibrations. Furthermore, aerc-
dynamic calculations are included, so that the program does not

need the aerodynamic forces and moments as inputs in addition to

the natural vibrations, but instead the rotor geometry, the rotor

moduli _x and _z, and the induced downwash wi. Other influences on

the airflow toward the blade can be incorporated without difficulty.

These mutually compatible programs make it possible to ca].-

culate the coupled natural vibrations by the multihinge articulated

blade method with a maximum of 40 identical blade segments :(i.e.
a maximum of 120 degrees of freedom), than to reduce them by a type

of selection procedure to a maximum of 20 identical blade segments,

and thus to calculate the forced vibrations, e.g. separation

flutter• The Runge-Kutta method is employed. Up to 12 degrees of

freedom qi, i.e. 12 natural modes, can be taken, each natural
mode consisting of three curves. For the aerodynamic component

the theory 6 = const, was used from Report 3 of Just and Jaeckel
[7]. In addition, however, the wind speeds had to be transformed

_nto the fixed-blade-element system which is wind-tipped because
of the blade deformation. Furthermore, the aerodynamic forces

occurring on the blade element had to be correspondingly trans-

formed back. Subroutines were called for the unsteady profile
coefficients.

The results of the computations are the values of the general-
ized degrees of freedom qi as functions of time. Using them, we

can calculate the blade retention forces, and, with the aid of the

natural moments, the bending and torsion moments together with the
associated material stresses, as was done in Amer and LaForge [4].

Furthermore, the behavior of the qi will indicate whether, in a
particular flight situation, the blade vibrations will grow with

time, or whether there is stability. Peter Crimi [5] has invest_-

gated this question in a more general fashion, although the
mathematics is somewhat complicated in that case as well.

8.2. Given Data and Curves

As our "experimental animal," we take the Sikorsky S-61 H1

helicopter in the version with flapping hinge but no swivel h_nge.
Most of the data on the blade is contained in TRECOM T.R 64__c F_n

The missing data was chosen so that it was compatible with the

given data. The basic parameters are
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f

= 9-45 m a = 0.32C6 m I = 0.45

_eo= 21.24 s "_ = = 5

(8.L)

The blades have the NACA 0012 profile, and a constant chord

of 45 cm, and are thus rectangular. The weight per segment and

in particular the rigidity values do vary, however, as shown in
the Table on the next page. We will take these weights as being

concentrated in a point at the x-position concerned. We choose

the following quantities:

E = 7000 kg/mm2

,. 2 =_. S2
m _m5 18404 kg

t'F =-" 0.08 m

G = 2700 kg/I== 2

I. 2 im Lm_ 0,'75_'t0 "_kg s_

m'Lss m 0.03 kg S2/m

(8.2)

The latter corresponds to a center of gravity displaced back-

wards by about 6.5% in comparison with the elastic axis. In the

undeformed state, the latter is taken to be a straight line co-

inciding with the x-axis (see Fig. 2.1). In the following, we
calculate with

eA " eF - BI " B= - 0

e=- .e=.o (8.3)

which corresponds to a flight speed of v = 75 m/sec and a rotor

angle of attack of a = -13 °. Since the aircraft weight must be

about 9300 kg, we require k a = 0.0133 in horizontal flight. Using
the curves of the DFH Report 42 [8], we obtain

/5__5

OQ? _= t2 ° 6 - v= - w_ -_ - t9 -_ ( 8.4 )

which corresponds to awi of 2.1 m/xec. We calculate a more pre-

cise wi and B from Report 3 [7], Chapter 9, Section 4, o_ Chapter

3:

4]
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TABLE OF BLADE

X Segment wt

R-O [ks]

L | ,

PARAMETERS

Thickness of
wall [cm]

t,000 1.t80

.950 5.70

,900 W,31

.850 _. 1"/

.800 _.1%

WHICH ARE FUNCTIONS OF x

0,185 _.0,58 !+20A.O 110.50

0,368 80.55 8_.5.0 228.9

0.368 81 . t'7 853, 3 237.5

O,571 82,83 859, 5 245.6

0,578 83,25 865.8 249.3

/750 h ,21

.700 _.089

.650 4,lk 5

,600 4.28_

.550 _.25

0.384

O,39t

0.401

84,8t 869.9 262.2

87.41 986,5 2"/_, 7

9t , t5 999,0 285.0

95.32 t011,5 291,1t.

87, 82 1052.3 303,8

.500 _..L_g_

.I,50 1+.5t

.400 =+.SL_

,350 k,.4t

,300 3. g8

0.40t t01,98 t123.8 3t6.3

0,457 104,48 t436,3 328.8

I t08,22 1165.5 34t.3112.80 1186.3 555.8

0,_57 11G .55 t2_.g .6 3% .6

.250 _.1t

.200 3.87

,150 k.77

.100 25.04

,050 38.t'/

.03394 _.280

0,513 121.13

0.535 126,5b

0.673 _8_,15

2,5_0 1875.1

5.060 3t2t.8

5.080 5121.80

1240._ _12 .I

12G9.5 582.7

1456.8 12_8,7

2813.'/ 2081.2

3121,8 1+t62.4

5121.80 4t62,40



wl ,_ I. 77 m/s B _ 0.98_ (_.5)

From all the previously given data with the exception of Z,

8c, es, Vx, Vz, _, wi and B, we obtain the natural vibrations. In
the sense of the natural-mode method, they are a part of the input

data, but, as a whole, are intermediate results, and are therefore

presented in Chapter 8.3.

The assumed initial state for the forced vibrations can be

described by

- 0
(8.6)

The "£" means "for all x." It is true that, in the sense of

Chapter 7, any arbitrary initial deflection curves could be used

as input, but in this as in other assumptions, the objective is

to organize the numerical examples to be as simple and clear as

possible.

Lastly, the [c a Cw Cm] (aeff) curves employed are important
output data. For the numerical examples of this report, we used
subroutines based on the unsteady coefficient curves depicted in

Fig. 8.1. Various curves valid for the NACA 0012 profile were
averaged and schematicized. The coefficients depend not only on

aef f but also on the absolute value of &eff' More precise sub-

routines, in particular allowing for the Mach-number effect, are
naturally desirable for practical calculations, and the Institute

already has some of them. For our rather illustrative examples,

these simple subroutines are sufficient, however. One important
reason is that the largest and most influential aerodynamic

forces were calculated for small positive values of aef f.

8.3. Results of Computation and Discussion

Four examples were calculated with the output data presented

in the preceding chapter. The examples differ both in the natural

modes permitted as degrees of freedom, and in the fact that the

x-y-z coordinate system matches the rotation through SBl(t) in
the sense of Chapter 6 in one case, and does not in the other.
The situation is summarized in the following table.

/5_/6

/5__!7
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E xamp le

I

II

III

IV

NB

0

I

0

I

Natural modes

_. M_

I. M_ 2.M_

I. M_ 2.Mp

I. M_ 2.M_

I.M$

I

I.Ms II'MT

NU

2

2

)

2

See Figs.

8.6 - 8.7

8.8 - 8.9

8.10 - 8.15

8.16 - 8.19

NU = number of rotations about rotor axis

I.M 8 (2.M8) = First (second) flapwlse natural mode

1.M_ = " edgewise natural mode

1.M t = " torsion natural mode

NB = 0(1): the coordinate system is (is not) rotated through the

previously calculated flapping angle 8Bl(t).

This means that for NB = 0, apart from the natural modes

mentioned, there is also the degree of freedom "rotation about the

flapping axis," which we will call 0.M 8. The associated q, i.e.

q(0.Ms) , is calculated just like q(1.M_), but uncoupled and
starting from a nonrotated system. Then the other q's are cal-

culated,..relative to the system rotated by 8Bl(t), where _B1,
_B1 and 8B1 are easily obtained from q, _, and _ of 0.Ms. It is
sufficient to calculate 8Bl(t) Just one Runge-Kutta step in ad--

vance, and then to bring along the remaining q. They are naturally

affected by q(0.Ms), particularly q(1.Ms), which almost vanishes
for NB = 0.

The coupled natural modes used in the example are depicted in /5__8
Figs. 8.1 through 8.4. The associated natural frequencies are

Natural mode

Natural frequen-
cy (an_ular fre-
q_ency7 in
sec-I

1 .M_

21.813

2.M_

56,18 18.02

1.NT

144.6

(8.7)

Forty segments were used in calculating the natural vibra-

tions, and this number was reduced to ten in order to calcu]ste

the forced vibrations. A reduction to 20 segments would also have

been possible. Calculating the generalized aerodynamic forces
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for forced vibrations (see Eq. (6.19)) naturally requires fewer
segments than calculating the natural vibrations. The natural
modes were determined so that the principal deflection curve in
each case has the value unity at Point 41, and thus is somewhat
less than unity at the tip of the blade, which coincides with
Point 40. The deflections in Figs. 8.1 through 8.4 have the
following dimensions:

Deflection

Dimension i[m] [m] [^]
(8.8)

The degrees of freedom qi in Figs. 8.6 through 8.19 are thus
dimensionless.

Example I shows q(0.M_) and q(l.M_) or, expressed somewhat

differently, q(1.MB), first in the stationary system, and then in
the system rotated by BBl(t), where the latter q, as it must,
almost vanishes. The building-up process is virtually complete

by the end of the first rotation, and so the system is very stable.

In example II, the first two flapwise natural modes and the

first edgewise natural mode are taken into account, relative to

the (BB1 _ 0)-system. The weak q(2.M B) and the strong q(1.M_)
are striking. Further details are provided by the discussion of

the next example.

Example III shows the same degrees of freedom, but in the /59
"flapping" coordinate system. Initially, the statement made about

the q-curves in examples I and II also hold in this case. How-

ever, the q(l.M_) curve eventually acquired almost exactly the
opposite deflection direction as in Example II. This is due to

the BBl-_B 1Corlolis forces, which, in the first rotation, particu-
larly between _ = 80 ° and _ = 180 ° impart to the blade a strong

impulse in the forward direction and thus impose upon it a dif-

ferent motion behavior. Edgewise bending can thus be calculated
correctly only with NB = 0.

The end of the building-up process in q(1.M_) cannot be fore-
seen even after three rotations. This means that, under the

assumed conditions, perturbations would continue to act, and even

be amplified, as long as a skilled pilot did not counteract them.
This circumstance is closely related _o the small difference

between _Ro and the first edgewise natural frequency. The instal-

lation of a swivel hinge, which is indeed normally present, or

detuning the first edgewise natural frequency in another fashion

would be advantageous in this case.
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In Example IV, in which the step width was reduced from

A@B1 = i0 ° to A_B1 = 5° , with the result that the A_B1 = l0 ° com-
putation was found to be quite usable, we have the degree of

freedom 1.MT, i.e. the first torsion natural mode, in addition

to the degrees of freedom 1.Ms, 2.M8, and 1.M_. They bring about

more fundamental changes in the situation than 0.M_ does in
Example III. The latter variable is again omitted here, in order

to study the influences separately. The most conspicuous

phenomenon is the amplification of q(1.MT). As a rough calcula-
tion shows, it is futile to look for the explanation in the

hysteresis loops of the Ca(_eff) and the Cm(_eff) curves, although

both of them could conceivably contribute to amplily!ng torsion,
the former in connection with a positive lever arm for the lift
force. The situation becomes clear if one considers the inter-

action between q(1.Ms) and q(1.MT). If q(I.MT) is large, this

makes the blade angle of attack, the llft and thus _(1.MB)

particularly large. From this point of view, q(l.M_) and q(1.MT)
must therefore vibrate in countermotion. The up-and-down motion

of the blade now induces a further component in the lift, one
proportional to -q(l.Ms) , since the downward flapping of the blade

increases the lift. This secondary lift component always reaches

its maximum when _(1.MT) is greatest, so that it feeds power to
I.M T when it induces a buckling moment.

This amplification effect, which can be provided with a more

exact mathematical foundation, therefore rests on the fact that a

lifting force induces a buckling moment. This occurs in our

example because we apply the lift force to the x-axls, while the

center of gravity of the blade is further back, since
ZES _ 6%1 > 0 (cf. Fig. 2.1 and Chapter 8_i). In the first tor-

sion natural mode, this circumstance is expressed in the positive
ZE-component (see Fig. 8.5). In the first torsion natural vibra-

tion, the blade elements therefore do not rotate about the elastic

axis, but roughly about the center-of-gravlty axis.

In the first rotation (see Figs. 8.16 and 8.17), the buckling

lift moment, which occurs not only dynamically, but also statical-

ly due to the centrifugal forces when zE' is positive, causes
increases in the blade angle of attack, and thus in the thrust and
in q(1.M 8) as well in comparison with Example II. In the second

rotations, however, the torsion vibration is already so strong

that aeff fluctuates constantly between large positive (greater

than 16 °) and negative values, so that the mean value of q(1.M B)
and thus the rotor thrust become zero. The torsion is further

amplified by repeated circuits of the Ca-aef f hysteresis loop.

Naturally, in this case, the blade experiences a strong constsnt
drag and an even stronger sin _Bl-shaped drag, which is reflected

in the behavior of q(1.M_).

160

It is unlikely that the Sikorsky S-61 blade is so unfavorably /61
designed that all this can really happen. Instead, the center-of-
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gravity axis, as opposed to our assumption, will be so fsr forward

that the llft force no longer has a buckling moment relative to

the blade center of gravity. Hence, the computation does not
demonstrate the existence of a faulty design, but merely indicates
the need for caution.
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